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Abstract

Nonlinear vibration of beams made of functionally graded materials (FGMs) containing an open edge crack is studied in

this paper based on Timoshenko beam theory and von Kármán geometric nonlinearity. The cracked section is modeled by

a massless elastic rotational spring. It is assumed that material properties follow exponential distributions through beam

thickness. The Ritz method is employed to derive the governing eigenvalue equation which is then solved by a direct

iterative method to obtain the nonlinear vibration frequencies of cracked FGM beams with different end supports.

A detailed parametric study is conducted to study the influences of crack depth, crack location, material property gradient,

slenderness ratio, and end supports on the nonlinear free vibration characteristics of cracked FGM beams. It is found that

unlike isotropic homogeneous beams, both intact and cracked FGM beams show different vibration behavior at positive

and negative amplitudes due to the presence of bending–extension coupling in FGM beams.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic characteristics of cracked structures are of considerable importance in structural health
monitoring. It is known that a crack in a structure introduces a local flexibility, reduces the stiffness and may
change the dynamic behavior of the structure. The linear and nonlinear dynamic responses of homogeneous
cracked structures have been extensively studied. Based on the line–spring model, many investigators [1–17]
considered the linear free vibration and crack identification technique of cracked beams. Lee and Lim [18]
developed a numerical method based on the Rayleigh method for predicting the natural frequencies of a
rectangular plate with a centrally located crack. Khadem and Rezaee [19,20] studied the free vibration of a
simply supported plate with an all-over crack or a finite length crack by using an analytical approach. Douka
et al. [21] and Hadjileontiadis and Douka [22] presented the crack identification technique for plate structures
based on wavelet analysis and kurtosis analysis. Rucka and Wilde [23] applied continuous wavelet transform
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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to vibration based damage detection problems in beams and plates. Demir and Mermertas [24] obtained the
natural frequencies of annular plates with circumferential cracks by using finite element method. El Bikri et al.
[25] investigated the geometrically nonlinear free vibrations of a clamped–clamped beam with an edge crack.
By using the Galerkin method, the dynamic instability and nonlinear response of the cracked plates subjected
to period in-plane load were theoretically analyzed by Wu and Shih [26].

Functionally graded materials (FGMs) are inhomogeneous composites characterized by smooth and
continuous variations in both compositional profile and material properties and have found a wide range of
applications in many industries. In the past 10 years, many investigators have studied the linear [27–31] and
nonlinear [32–37] dynamic responses of FGM structures. However, very limited literature is available
concerning the effect of crack defects on the dynamic behavior of FGM structures. Sridhar et al. [38]
developed an effective pseudo-spectral finite element method for wave propagation analysis in anisotropic and
inhomogeneous structures with or without vertical and horizontal cracks. They also demonstrated the
effectiveness of modulated pulse in detecting small cracks in composites and FGMs. Briman and Byrd [39]
examined free and forced vibration of a functionally graded cantilever beam with damages such as a region
with degraded stiffness adjacent to the root of the beam, a single delamination crack, and a single crack at the
root cross-section of the beam propagating in the thickness direction. Most recently, Yang and Chen [40]
analytically discussed the influence of open edge cracks on the vibration and buckling of Euler–Bernoulli
FGM beams with different boundary conditions. They also studied the free and forced vibration of cracked
Euler–Bernoulli inhomogeneous beams under an axial force and a transverse moving load [41]. Ke et al. [42]
considered the free vibration and elastic buckling of cracked Timoshenko graded beam. However, all the
aforementioned works for cracked FGM structures are limited to linear analysis only. To the best of authors’
knowledge, no previous work has been done on the nonlinear vibration of the cracked FGM structures.

In this paper, the nonlinear vibration of FGM beams containing an open edge crack is studied based on von
Kármán geometric nonlinearity. The effects of the transverse shear deformation and rotary inertia are
considered within the framework of Timoshenko beam theory. The crack is modeled by a massless elastic
rotational spring. The material properties of an FGM beam vary exponentially along the thickness direction.
The Ritz method and a direct iterative technique are employed to obtain the nonlinear frequencies and mode
shapes of cracked FGM beams with different end supports. Comprehensive numerical results are provided to
examine the effects of material property gradient, crack depth, crack location, slenderness ratio, and boundary
conditions on the nonlinear free vibration characteristics of the FGM beams.
2. The rotational spring model

Fig. 1a shows an FGM Timoshenko beam of length L and thickness h, containing an edge crack of depth
a located at a distance L1 from the left end. Its Young’s modulus E(z) and mass density r(z) follow exponential
distributions through thickness direction

EðzÞ ¼ E0 e
bz; rðzÞ ¼ r0 e

bz, (1)
1 

L

L1

a x 

z

h

E1, �1

E2, �2

2 

Fig. 1. (a) An FGM Timoshenko beam with an open edge crack and (b) rotational spring model.
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where E0 and r0 are the values of Young’s modulus and mass density at the midplane (z ¼ 0); b the constant
characterizing the gradual variation of material properties along beam thickness, and b ¼ 0 corresponds to an
isotropic homogeneous beam. Poisson’s ratio n is taken to be constant since its influence on the stress intensity
factors (SIFs) is quite limited [43].

It is assumed that the crack is perpendicular to beam surface and always remains open. The edge crack in a
Timoshenko beam creates discontinuities in bending slope as well as transverse displacement at the cracked
section. Since previous studies [6,9] showed that compared with the discontinuity in bending slope (mode I
fracture), the discontinuity in transverse displacement (mode II fracture) has a much smaller contribution to
system’s total strain energy, the effect of mode II fracture is neglected in the present analysis. The crack section
is therefore modeled as a massless elastic rotational spring shown in Fig. 1b. Based on this model, the cracked
beam can be regarded as two sub-beams connected by the rotational spring at the cracked section whose
bending stiffness is given as

KT ¼
1

G
, (2)

where G is the flexibility due to the crack and can be derived as [44]

ð1� n2ÞK2
1

EðaÞ
¼

M2

2

dG

da
, (3)

where M is the bending moment at the cracked section, K1 the SIF under mode I bending load, and E(a) is
Young’s modulus at the crack tip.

The magnitude of SIF can be obtained from the data given by Erdogan and Wu [43] through Lagrange
interpolation technique

K1 ¼
6M

ffiffiffiffiffiffiffiffi
phB
p

h2
F ðBÞ; B ¼

a

h
ðBp0:7Þ, (4)

where Bp0:7 implies that this paper considers crack depth ratio from 0.0 to 0.7 only, and

F ðBÞ ¼ 1:910� 2:752B� 4:742B2 þ 146:776B3 � 770:750B4 þ 1947:830B5

� 2409:170B6 þ 1177:980B7; when E2=E1 ¼ 0:2, (5a)

F ðBÞ ¼ 1:150� 1:662Bþ 21:667B2 � 192:451B3 þ 909:375B4 � 2124:310B5

þ 2395:830B6 � 1031:750B7; when E2=E1 ¼ 1:0, (5b)

F ðBÞ ¼ 0:650� 0:859Bþ 12:511B2 � 72:627B3 þ 267:910B4 � 535:236B5

þ 545:139B6 � 211:706B7; when E2=E1 ¼ 5:0. (5c)

The expression of F(B) for other values of Young’s modulus ratio can be obtained by using Lagrange
interpolation technique as well. Substituting Eq. (4) into Eq. (3) leads to

G ¼

Z B

0

72pð1� n2ÞBF 2ðBÞ

EðBhÞh2
dB. (6)

From Eqs. (2), (5) and (6), the bending stiffness of the cracked section can be determined.

3. Nonlinear vibration analysis

3.1. Energy functional of the cracked FGM beam

Based on Timoshenko beam theory, the displacements of an arbitrary point in the beam along the x- and
z-axes, denoted by ~Uðx; z; tÞ and ~W ðx; z; tÞ, respectively, are

~Uðx; z; tÞ ¼ Uðx; tÞ þ zCðx; tÞ; ~W ðx; z; tÞ ¼W ðx; tÞ, (7)
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where U(x,t) and W(x,t) are displacement components in the midplane, C the rotation of beam cross-section
and t the time. The von Kármán type nonlinear strain–displacement relations are given by

�x ¼
qU

qx
þ z

qC
qx
þ

1

2

qW

qx

� �2

; gxz ¼
qW

qx
þC. (8)

The normal stress sxx and shear stress txz are related to strains through linear elastic constitutive law as

sxx ¼ Q11ðzÞ
qU

qx
þ z

qC
qx
þ

1

2

qW

qx

� �2
" #

; sxz ¼ Q55ðzÞ
qW

qx
þC

� �
, (9)

where

Q11ðzÞ ¼
EðzÞ

1� n2
; Q55ðzÞ ¼

EðzÞ

2ð1þ nÞ
. (10)

From Eqs. (7)–(10), the kinetic energy T and potential energy V of the cracked FGM beam are expressed as

T ¼
1

2

Z L1

0

Z h=2

�h=2
r

qU1

qt
þ z

qC1

qt

� �2

þ
qW 1

qt

� �2
" #

dzdxþ
1

2

Z L

L1

Z h=2

�h=2
r

qU2

qt
þ z

qC2

qt

� �2

þ
qW 2

qt

� �2
" #

dzdx,

(11)

V ¼
1

2

Z L1

0

Z h=2

�h=2
Q11

qU1

qx
þ z

qC1

qx
þ

1

2

qW 1

qx

� �2
" #2

þQ55

qW 1

qx
þC1

� �2

8<
:

9=
;dzdx

þ
1

2

Z L

L1

Z h=2

�h=2
Q11

qU2

qx
þ z

qC2

qx
þ

1

2

qW 2

qx

� �2
" #2

þQ55

qW 2

qx
þC2

� �2

8<
:

9=
;dzdxþ

1

2
KtðDCÞ

2, (12)

where DC ¼ C2ðL1Þ �C1ðL1Þ; subscript i ¼ 1,2 in Ui, Ci, Wi refer to the left sub-beam and right sub-beam
divided by the crack. Note that the last term on the right-hand side of Eq. (12) denotes the potential energy
due to the rotational spring.

Define the stiffness components and inertia related terms as

fA11;B11;D11g ¼

Z h=2

�h=2
Q11ðzÞf1; z; z

2g dz; A55 ¼

Z h=2

�h=2
kQ55ðzÞdz; fI1; I2; I3g ¼

Z h=2

�h=2
rðzÞf1; z; z2gdz, (13)

where k ¼ 5/6 is shear correction factor. Then, the maximum kinetic energy Tmax of the cracked FGM beam
undergoing harmonic motion can be written as

Tmax ¼
O2

2

Z L1

0

ðI1U2
1 þ 2I2U1C1 þ I3C2

1 þ I1W 2
1Þdxþ

O2

2

Z L

L1

ðI1U
2
2 þ 2I2U2C2 þ I3C2

2 þ I1W
2
2Þdx, (14)

where O is the nonlinear frequency of the beam. If Vlinear and Vnonlinear denote the potential energy associated
with the linear and nonlinear strain terms in Eq. (8), respectively, the maximum potential energy Vmax of the
cracked FGM beam is expressed as

Vmax ¼ V linear þ Vnonlinear, (15)

where

V linear ¼
1

2

Z L1

0

A11
qU1

qx

� �2

þ 2B11
qU1

qx

qC1

qx
þD11

qC1

qx

� �2

þ A55
qW 1

qx
þC1

� �4
" #

dx

þ
1

2

Z L

L1

A11
qU2

qx

� �2

þ 2B11
qU2

qx

qC2

qx
þD11

qC2

qx

� �2

þ A55
qW 2

qx
þC2

� �2
" #

dxþ
1

2
KtðDCÞ

2, (16)
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Vnonlinear ¼
1

2

Z L1

0

A11
qU1

qx

qW 1

qx

� �2

þ B11
qC1

qx

qW 1

qx

� �2

þ
1

4
A11

qW 1

qx

� �4
" #

dx

þ
1

2

Z L

L1

A11
qU2

qx

qW 2

qx

� �2

þ B11
qC2

qx

qW 2

qx

� �2

þ
1

4
A11

qW 2

qx

� �4
" #

dx. (17)

Introducing the following dimensionless quantities

z ¼
x

L
; z0 ¼

L1

L
; ðu;wÞ ¼

ðU ;W Þ

h
; ðĪ1; Ī2; Ī3Þ ¼

I1

I10
;

I2

I10h
;

I3

I10h2

� �
; c ¼ C, (18a)

Z ¼
L

h
; ða11; a55; b11; d11Þ ¼

A11

A110
;

A55

A110
;

B11

A110h
;

D11

A110h2

� �
; o ¼ OL

ffiffiffiffiffiffiffiffiffi
I10

A110

r
, (18b)

where A110 and I10 are the values of A11 and I1 of a homogeneous beam (i.e., b ¼ 0), Eqs. (14), (16) and (17)
can be expressed in dimensionless form

T�max ¼
o2

2

Z z0

0

ðĪ1u
2
1 þ 2Ī2u1c1 þ Ī3c

2
1 þ Ī1w

2
1Þdzþ

Z 1

z0

ðĪ1u2
2 þ 2Ī2u2c2 þ Ī3c

2
2 þ Ī1w2

2Þdz
� �

, (19)

V�linear ¼
1

2

Z z0

0

a11
qu1

qz

� �2

þ 2b11
qu1

qz
qc1

qz
þ d11

qc1

qz

� �2

þ a55
qw1

qz
þ Zc1

� �2
" #

dz

þ
1

2

Z 1

z0

a11
qu2

qz

� �2

þ 2b11
qu2

qz
qc2

qz
þ d11

qc2

qz

� �2

þ a55
qw2

qz
þ Zc2

� �2
" #

dzþ
1

2
K�T ðDcÞ

2, (20)

V�nonlinear ¼
1

2

Z z0

0

a11

Z
qu1

qz
qw1

qz

� �2

þ
b11

Z
qc1

qz
qw1

qz

� �2

þ
a11

4Z2
qw1

qz

� �4
" #

dz

þ
1

2

Z 1

z0

a11

Z
qu2

qz
qw2

qz

� �2

þ
b11

Z
qc2

qz
qw2

qz

� �2

þ
a11

4Z2
qw2

qz

� �4
" #

dz, (21)

where

T�max ¼
Tmax

D0
; V�linear ¼

V linear

D0
; V�nonlinear ¼

Vnonlinear

D0
; K�T ¼

KT

D0
; D0 ¼

A110h2

L
. (22)

Therefore, the energy functional for the cracked Timoshenko beam can be written as

P ¼ V�linear þ V�nonlinear � T�max. (23)

3.2. Ritz trial functions

The present study considers cracked FGM beams with three different end supports, i.e., hinged at both ends
(H–H), clamped at both ends (C–C), or clamped at left end and hinged at right end (C–H). The automated
Ritz method [45,46] is employed to derive the governing eigenvalue equation for nonlinear vibration of
cracked FGM beams. The Ritz trial functions for each sub-beam are expressed in the form of

u1ðzÞ ¼
XN

j¼1

Ajz
j ; u2ðzÞ ¼

XN

j¼1

~Ajz
j�1
ð1� zÞ, (24a)

w1ðzÞ ¼
XN

j¼1

Bjz
j ; w2ðzÞ ¼

XN

j¼1

~Bjz
j�1
ð1� zÞ, (24b)
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c1ðzÞ ¼

PN
j¼1

Cjz
j�1; for hinged end;

PN
j¼1

Cjz
j ; for clamped end;

8>>>><
>>>>:

c2ðzÞ ¼

PN
j¼1

~Cjz
j�1; for hinged end;

PN
j¼1

~Cjz
j�1
ð1� zÞ; for clamped end;

8>>>><
>>>>:

(24c)

where N is the total number of polynomial terms; Aj, Bj, Cj, ~Aj , ~Bj, ~Cj are unknown coefficients.
For the cracked FGM beams, the compatibility conditions enforcing the continuity of axial displacement

and transverse deflection at the cracked section are

u1ðz0Þ ¼ u2ðz0Þ; w1ðz0Þ ¼ w2ðz0Þ, (25)

and a jump in the rotation due to bending exists which requires

c2ðz0Þ � c1ðz0Þ ¼
1

K�T
b11

qu2

qz
þ d11

qc2

qz

� �
z¼z0

. (26)

It should be pointed out that on the right-hand side of Eq. (26), linear bending moment is used as an
approximation in order to avoid the nonlinear terms in trial functions. Note that the trial functions in Eq. (24)
can satisfy the geometric boundary conditions on both ends but cannot satisfy the compatibility conditions
given in Eqs. (25) and (26). In order to enforce the requirements given in Eqs. (25) and (26) at the cracked
section, the trial functions u1ðzÞ, w1ðzÞ, and c1ðzÞ for the left sub-beam need to be modified based on Eqs. (25)
and (26) while those for right sub-beam (u2ðzÞ, w2ðzÞ, and c2ðzÞ) remain unchanged. The final forms of trial
functions of the left sub-beams are expressed as follows:

u1ðzÞ ¼ uaðzÞ þ ubðzÞ; w1ðzÞ ¼ waðzÞ þ wbðzÞ; c1ðzÞ ¼ caðzÞ þ cbðzÞ þ ccðzÞ, (27)

where

uaðzÞ ¼
XN

j¼1

Ajz
j
ðz� z0Þ; ubðzÞ ¼

z
z0

XN

j¼1

~Ajz
j�1
0 ð1� z0Þ, (28)

waðzÞ ¼
XN

j¼1

Bjz
j
ðz� z0Þ; wbðzÞ ¼

z
z0

XN

j¼1

~Bjz
j�1
0 ð1� z0Þ, (29)

H2H beam :

caðzÞ ¼
PN
j¼1

Cjz
j�1
ðz� z0Þ;

cbðzÞ ¼
PN
j¼1

~Cj zj�1
0 �

d11

K�T
ðj � 1Þzj�2

0

� �
;

ccðzÞ ¼ �
b11

K�T

PN
j¼1

~Aj½ðj � 1Þzj�2
0 ð1� z0Þ � zj�1

0 �;

8>>>>>>>>><
>>>>>>>>>:

(30a)

C2C beam :

caðzÞ ¼
PN
j¼1

Cjz
j
ðz� z0Þ;

cbðzÞ ¼
z
z0

PN
j¼1

~Cj zj�1
0 ð1� z0Þ �

d11

K�T
½ðj � 1Þzj�2

0 ð1� z0Þ � zj�1
0 �

� �
;

ccðzÞ ¼ �
z
z0

b11

K�T

PN
j¼1

~Aj½ðj � 1Þzj�2
0 ð1� z0Þ � zj�1

0 �;

8>>>>>>>>><
>>>>>>>>>:

(30b)
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C2H beam :

caðzÞ ¼
PN
j¼1

Cjz
j
ðz� z0Þ;

cbðzÞ ¼
z
z0

PN
j¼1

~Cjz
j�1
0 �

d11

K�T

PN
j¼1

~Cjðj � 1Þzj�2
0

( )
;

ccðzÞ ¼ �
z
z0

b11

K�T

PN
j¼1

~Aj ½ðj � 1Þzj�2
0 ð1� z0Þ � zj�1

0 �:

8>>>>>>>>>><
>>>>>>>>>>:

(30c)

3.3. Solution technique

Substituting Eqs. (27)–(30) in to energy functional (23), and applying standard Ritz procedure to minimize
the total energy functional with respect to the unknown coefficients

qP
qAj

¼ 0;
qP

q ~Aj

¼ 0;
qP
qBj

¼ 0;
qP

q ~Bj

¼ 0;
qP
qCj

¼ 0;
qP

q ~Cj

¼ 0, (31)

leads to nonlinear governing equation

ð½KL� þ
1
2
½KNL1� þ

1
3
½KNL2�Þfdg � o2½M�fdg ¼ 0, (32)

where fdg ¼ ffAjg
T f ~Ajg

T fBjg
T f ~Bjg

T fCjg
T f ~Cjg

TgT, j ¼ 1; 2; . . . ;N; [M] is the mass matrix, [KL] is the linear
stiffness matrix, [KNL1] and [KNL2] are nonlinear stiffness matrices that are linear and quadratic functions in fdg,
respectively. [KL], [KNL1], [KNL2] and [M] are 6N� 6N symmetric matrices whose elements are given in
Appendix A.

Before solving the nonlinear governing Eq. (32), we first examine the energy balance equation V�T ¼ 0.
It is noted that due to the bending–extension coupling effect in FGM beams (i.e., B11a0), Eq. (11)
contains terms with odd powers such as qC1=qxðqW 1=qxÞ2, qC2=qxðqW 2=qxÞ2. This implies that when
qUi=qt ¼ qW i=qt ¼ qCi=qt ¼ 0 ði ¼ 1; 2Þ, the energy balance equation does not yield equal and opposite
roots. Thus, the FGM beam vibrates with different amplitudes at positive and negative cycles. Homogeneous
beams, however, do not have bending–extension coupling effect and the energy balance equation produces
equal and opposite roots. The similar phenomenon was observed for asymmetric cross-ply composite beams
by Singh and Rao [47,48]. In fact, quite similar to asymmetric cross-ply composite beams, FGM beams have
unsymmetrical through-thickness material property distribution as well. But, the material properties change
continuously and smoothly in FGMs.

Based on the fact that the energy required in each deflection cycle is same, the nonlinear frequency of the
cracked FGM beams can be obtained by computing the period of both positive and negative deflection cycles.
The nonlinear free vibration problem in Eq. (32) can be solved by employing a direct iterative method
described below:
Step 1.
 By neglecting the nonlinear matrices [KNL1] and [KNL2], a linear eigenvalue and the associated
eigenvector are obtained from Eq. (32). The eigenvector is then appropriately scaled up such
that the maximum transverse displacement is equal to a given vibration amplitude. At first,
we assume the given amplitude is positive wmax. Note that wmax ¼ w(0.5) for clamped–clamped
and hinged–hinged beams while wmax ¼ w(0.55) for clamped–hinged beams.
Step 2.
 Using the eigenvector to calculate [KNL1] and [KNL2], a new eigenvalue and eigenvector are
obtained from the updated eigensystem (32).
Step 3.
 The eigenvector is scaled up again and step 2 is repeated until the relative error between
eigenvalues obtained from two consecutive iterations is within 0.1%. Then, the nonlinear half-
cycle frequency o1 is obtained for the positive deflection cycle. Based on the amplitude and
deformation in positive deflection cycle, the energy Vþmax can be computed from Eqs. (20) and (21).
Step 4.
 Given a negative vibration amplitude wmin, repeat steps 1–3 to find the energy V�max in negative
deflection cycle. If Vþmax ¼ V�max, the nonlinear half-cycle frequency o2 is obtained for the negative
deflection cycle; otherwise new values must be chosen for negative vibration amplitude and the
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Table 1

Linear fundam

N

2

3

5

8

10

Ref. [42]

Table 2

Comparisons

Wmax=Y

1.0

2.0

3.0

4.0

5.0
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iteration procedure is continued till the new negative amplitude and deformation yield the same
energy with that at positive amplitude.
The nonlinear half-cycle frequencies thus obtained give the periods G1 and G2 at positive and negative
deflection cycles, i.e.,

G1 ¼
p
o1
; G2 ¼

p
o2

, (33)

Finally, the nonlinear frequency of the cracked FGM beams is computed as

o ¼
2p

G1 þ G2
. (34)

4. Numerical results

4.1. Convergence and comparison studies

Table 1 compares the linear fundamental frequencies of cracked FGM beams with varying total number of
polynomial terms N in the trial functions. The parameters used in this example are E1 ¼ 70GPa, n1 ¼ 0:33,
r1 ¼ 2780 kg=m3, E2/E1 ¼ 5, L/h ¼ 6, a/h ¼ 0.2 and L1/L ¼ 0.5. E1 and E2 denote Young’s modulus at the
top and bottom surfaces of the beam, respectively. The analytical solutions given by Ke et al. [42] are also
provided for direct comparison. It is seen that the accuracy of the present results is improved with an
increasing number of polynomial terms and is monotonically convergent to analytical solutions at N ¼ 8 or
10. Hence, N ¼ 8 is used in all of the following numerical calculations.

Table 2 gives nonlinear frequency ratio onl=ol at different maximum vibration amplitudes Wmax=Y
( ¼ 1.0, 2.0, 3.0, 4.0, 5.0) for isotropic homogeneous hinged–hinged, clamped–clamped and clamped–hinged
beams (L=h ¼ 100, h ¼ 0.3 in). Here, Y ¼

ffiffiffiffiffiffiffiffi
I=h

p
is the radius of the gyration of the beam with I and A as the

cross-section area and area moment of inertia, onl and ol are the dimensionless nonlinear and linear
frequencies, respectively. The present results agree very well with the finite element results obtained by Marur
and Prathap [49].
ental frequency of cracked FGM beams (E2/E1 ¼ 5, L/h ¼ 16, a/h ¼ 0.2, and L1/L ¼ 0.5).

H–H C–C C–H

0.18743 0.48367 0.27227

0.17681 0.36697 0.26148

0.17635 0.36487 0.25951

0.17635 0.36487 0.25933

0.17635 0.36487 0.25933

0.1760 0.3641 –

of nonlinear frequency ratio onl/ol for isotropic homogeneous beams (L/h ¼ 100 and h ¼ 0.3 in).

H–H C–C C–H

Present Ref. [49] Present Ref. [49] Present Ref. [49]

1.11920 1.1181 1.03029 1.0300 1.05923 1.0595

1.41801 1.4178 1.11520 1.1147 1.21789 1.2193

1.80919 1.8094 1.24191 1.2420 1.44023 1.4448

2.24511 2.2455 1.39829 1.3987 1.69576 1.6720

2.70429 2.7052 1.57471 1.5751 1.94717 1.9088
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Table 3 lists the dimensionless linear fundamental frequency ol for hinged–hinged and clamped–clamped
FGM beams (E1 ¼ 70GPa, n1 ¼ 0:33, r1 ¼ 2780 kg=m3, L/h ¼ 6, 16, h ¼ 0.1m) with a centrally located open
edge crack (a/h ¼ 0.2, L1/L ¼ 0.5). Again, excellent agreement is achieved between the present results and
analytical solutions [42].

It is mentioned above that Eq. (26) uses an approximation that the nonlinear term is excluded in the
expression for bending moment. To address the error induced by this approximation, Table 4 presents the
dimensionless nonlinear frequency onl of the cracked hinged–hinged FGM beam obtained by the present Ritz
method and differential quadrature method (DQM). The governing equations, boundary and compatibility
Table 3

Comparison of linear fundamental frequency of cracked FGM beams with a/h ¼ 0.2 and L1/L ¼ 0.5.

L/h E2/E1 H–H C–C

Present Ref. [42] Present Ref. [42]

16 0.2 0.17310 0.17279 0.36095 0.36018

1.0 0.17222 0.1720 0.38475 0.3840

5.0 0.17635 0.1760 0.36487 0.3641

6 0.2 0.41921 0.41415 0.82329 0.81249

1.0 0.42454 0.4198 0.86882 0.8584

5.0 0.43757 0.43231 0.83964 0.82893

Table 4

Comparison of the dimensionless nonlinear fundamental frequencies of hinged–hinged cracked FGM beams (l/h ¼ 6, a/h ¼ 0.2, and

L1/L ¼ 0.5).

E2/E1 wmax ¼ 0.2 wmax ¼ 0.4

DQM Present DQM Present

0.2 0.42893 0.43132 (0.55%) 0.46700 0.47796 (2.3%)

1.0 0.44985 0.45325 (0.75%) 0.51833 0.53042 (2.3%)

5.0 0.45061 0.45387 (0.72%) 0.52414 0.53383 (1.8%)

Table 5

Nonlinear frequency ratio onl/ol for intact FGM beams (l/h ¼ 6 and h ¼ 0.1m).

Boundary condition E2/E1 ol wmax

0.2 0.4 0.6 0.8 1.0

Hinged–hinged 0.2 0.45980 1.02173 1.11240 1.28512 1.51749 1.78919

1.0 0.45214 1.07270 1.23172 1.47025 1.75054 2.05509

5.0 0.45980 1.03234 1.20135 1.48610 1.79924 2.11749

Clamped–hinged 0.2 0.63836 1.02865 1.11008 1.23617 1.39309 1.55194

1.0 0.66357 1.03266 1.12391 1.25896 1.42359 1.56858

5.0 0.63836 1.03213 1.13268 1.28708 1.48872 1.64633

Clamped–clamped 0.2 0.86000 1.01926 1.07447 1.15936 1.26699 1.39057

1.0 0.89912 1.01744 1.06764 1.14536 1.24455 1.35944

5.0 0.86000 1.01926 1.07447 1.15936 1.26699 1.39057
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conditions to be used in DQM solution process are given in Appendix B. The parameters used in this example
are the same as in the first example. The figures in the brackets are the relative error between the results
obtained by using the present method and DQM. It is found that the present results are very close to DQM
ones, indicating that the approximation in Eq. (26) can give results with good accuracy.
Table 6

Effect of slenderness ratio L/h on the nonlinear frequency ratio onl/ol of clamped–clamped FGM beams (E2/E1 ¼ 5.0).

L/h ol wmax

0.2 0.4 0.6 0.8 1.0

6 0.86000 1.01926 1.07447 1.15936 1.26699 1.39057

12 0.48291 1.01681 1.06542 1.14094 1.23758 1.34998

24 0.24983 1.01629 1.06352 1.13729 1.23212 1.34307

40 0.15104 1.01622 1.06316 1.13659 1.23120 1.34190

Table 7

The nonlinear frequency ratio onl/ol of cracked FGM beams (l/h ¼ 6, h ¼ 0.1m, and a/h ¼ 0.2).

Boundary condition E2/E1 ol wmax

0.2 0.4 0.6 0.8

Hinged–hinged 0.2 0.41921 1.02889 1.14014 1.33542 1.67698

1.0 0.42454 1.06763 1.24940 1.50478 1.80428

5.0 0.43757 1.03727 1.22001 1.51199 1.77428

Clamped–hinged 0.2 0.61861 1.03193 1.11799 1.25410 1.41598

1.0 0.65025 1.03382 1.12803 1.26707 1.43522

5.0 0.62881 1.03309 1.13513 1.29026 1.48647

Clamped–clamped 0.2 0.82329 1.02048 1.08000 1.17243 1.28806

1.0 0.86882 1.01842 1.07133 1.15294 1.25704

5.0 0.83964 1.01953 1.07557 1.16151 1.26965

Table 8

Nonlinear frequency ratio onl/ol of cracked FGM beams with different crack depth (l/h ¼ 6, h ¼ 0.1m, and E2/E1 ¼ 5.0).

Boundary condition a/h ol wmax

0.2 0.4 0.6 0.8

Hinged–hinged 0.1 0.45369 1.03475 1.20823 1.49145 1.75052

0.2 0.43757 1.03727 1.22001 1.51199 1.77428

0.3 0.41319 1.04364 1.24306 1.55343 1.79435

Clamped–hinged 0.1 0.63600 1.03245 1.13344 1.28763 1.48558

0.2 0.62881 1.03309 1.13513 1.29026 1.48647

0.3 0.61468 1.03446 1.13775 1.29611 1.49045

Clamped–clamped 0.1 0.85435 1.01937 1.07454 1.15955 1.26733

0.2 0.83964 1.01953 1.07557 1.16151 1.26965

0.3 0.81883 1.02005 1.07700 1.16491 1.2749
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In what follows, Tables 5–8 and Figs. 2–6 present the solutions for nonlinear free vibration of
hinged–hinged, clamped–clamped, and clamped–hinged FGM beams with or without an open edge crack. In
Tables 5–8, the linear fundamental frequencies ol are also listed. Unless otherwise stated, the beam thickness
h ¼ 0.1m, slenderness ratio L/h ¼ 6, crack depth ratio a/h ¼ 0.1, 0.2, 0.3, crack location L1/L ¼ 0.5, Young’s
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Fig. 2. Nonlinear frequency ratio versus amplitude curves for intact FGM beams: (a) hinged–hinged, (b) clamped–clamped, and

(c) clamped–hinged.
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modulus ratio E2/E1 ¼ 0.2, 1.0, 5.0. As a special case, E2/E1 ¼ 1.0 corresponds to an isotropic homogeneous
beam. The top surface of the beam is 100% aluminum with material parameters E1 ¼ 70GPa; n1 ¼ 0:33;
r1 ¼ 2780 kg=m3.

4.2. Nonlinear vibration of intact FGM beams

Table 5 gives the nonlinear frequency ratio onl=ol for hinged–hinged, clamped–clamped and
clamped–hinged intact FGM beams. All these beams exhibit a typical ‘hard-spring’ behavior, i.e., the
nonlinear frequency ratio increases as the vibration amplitude is increased. It is noted that at E2/E1 ¼ 0.2 and
5.0, the linear frequencies of beams with same end supports are the same. For nonlinear frequency ratios,
however, this is true for clamped–clamped beams only but not for hinged–hinged and clamped–hinged beams.
This is because the linear frequency is directly dependent on the value of d=I1 (where d ¼ D11 � B2

11=A11)
which is almost identical at E2/E1 ¼ 0.2 and 5.0. In nonlinear vibration analysis, only geometric boundary
conditions are involved in clamped–clamped FGM beams while stress-related boundary conditions containing
nonlinear terms need to be considered in both hinged–hinged and clamped–hinged FGM beams. As can be
seen, an increase in Young’s modulus ratio E2/E1 leads to a higher nonlinear frequency ratio when wmaxX0:6
for hinged–hinged beam and when wmaxX0:4 for clamped–hinged beam.

Table 6 shows the effect of slenderness ratio L/h on the linear frequency and nonlinear frequency ratio of
clamped–clamped FGM beams (E2/E1 ¼ 5.0). Both linear frequency and nonlinear frequency ratio decreases
as slenderness ratio increases. As L/h changes from 6 to 40, the linear frequency drops remarkably but the
nonlinear frequency ratio decreases slightly. For long FGM beams ðL=hX12Þ, in particular, the effect of
slenderness ratio on the nonlinear frequency ratio is very small and is negligible.

Fig. 2 plots the nonlinear frequency ratio versus dimensionless amplitude curves for FGM beams without
edge crack. It is observed that at vibration amplitudes of same magnitude but opposite sign, frequency ratios
of hinged–hinged and clamped–hinged graded beams (E2/E1 ¼ 0.2, 5.0) are different, i.e., the curves are
unsymmetrical. This is, as discussed before, due to the bending–stretching coupling effect that makes energy
balance equation do not yields equal and opposite roots. However, for clamped–clamped beam and
homogeneous beams, the nonlinear frequency ratio is independent of the sign of vibration amplitude and their
curves are symmetrical.

4.3. Nonlinear vibration of cracked FGM beams

Table 7 tabulate the linear frequency and nonlinear frequency ratio onl=ol for hinged–hinged,
clamped–clamped and clamped–hinged FGM beams (l/h ¼ 6, h ¼ 0.1m, a/h ¼ 0.2) with an open edge crack
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Fig. 3. Comparisons of nonlinear frequency ratio versus amplitude curves for intact and cracked FGM beams (E2/E1 ¼ 0.2, L/h ¼ 6.0,

a/h ¼ 0.2).
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Fig. 4. Nonlinear frequency ratio versus amplitude curves for cracked FGM beams: (a) hinged–hinged, (b) clamped–clamped, and

(c) clamped–hinged.
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at the midpoint of the beam. All cracked FGM beams exhibit typical ‘hard-spring’ behavior. But unlike their
intact counterparts, the cracked clamped–clamped beams with E2/E1 ¼ 0.2 and 5.0 have different nonlinear
frequency ratios at same vibration amplitude. The nonlinear frequency ratios of cracked hinged–hinged
graded beams (E2/E1 ¼ 0.2, 5.0) are significantly lower than that of the homogeneous beam (E2/E1 ¼ 1.0)
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Fig. 5. Effect of crack location on linear and nonlinear frequencies of clamped–clamped cracked FGM beams (l/h ¼ 6, h ¼ 0.1m,

a/h ¼ 0.2, wmax ¼ 0.4).
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while the clamped–clamped and clamped–hinged beams have the opposite behavior. The linear frequency is
seen to be the maximum at E2/E1 ¼ 1.0 for clamped–clamped and clamped–hinged beams but increase
monotonically with increasing Young’s modulus ratio E2/E1 for hinged–hinged beam. A comparison of the
results in Tables 5 and 7 reveals that the linear frequencies of cracked FGM beams are lower than those of
intact FGM beams.

The effect of the presence of an edge crack on the nonlinear vibration behavior is clearly depicted in Fig. 3
where the nonlinear frequency ratio versus vibration amplitude curves of FGM beams with and without an
edge crack are directly compared. The nonlinear frequency ratio of a cracked FGM beam is higher than that
of its intact counterpart. This effect is seen to be significant in a hinged–hinged beam but much less so in a
clamped–clamped beam. This indicates that among the three boundary conditions considered in the present
study, the hinged–hinged beam which has the lowest end supporting rigidity is most sensitive to edge crack.

Table 8 shows the effect of crack depth on the linear frequency and nonlinear frequency ratio onl=ol of
FGM beams (E2/E1 ¼ 5.0, l/h ¼ 6, h ¼ 0.1m). The deeper the edge crack is, the weaker the cracked section
becomes. This leads to a smaller linear frequency but a slightly higher nonlinear frequency ratio at a given
amplitude value.

Fig. 4 displays the effect of the sign of vibration amplitude on the nonlinear vibration behavior of cracked
FGM beams. At vibration amplitudes of same magnitude but opposite sign, all cracked graded beams,
including the clamped–clamped ones, have different nonlinear frequency ratios. This is quite different from the
observations for intact clamped–clamped FGM beams although the difference between the nonlinear
frequency ratios at positive and negative deflection cycles is not large for cracked clamped–clamped FGM
beams. The nonlinear frequency ratio of cracked homogeneous beams, however, is still independent of the sign
of vibration amplitude.

The effect of crack location on the linear and nonlinear fundamental frequencies of clamped–clamped FGM
beams (l/h ¼ 6, h ¼ 0.1m, a/h ¼ 0.2, wmax ¼ 0.4) is investigated in Fig. 5. It is found that both linear and
nonlinear frequencies are most sensitive to crack located at the beam center. The influence of crack tends to be
smaller as the crack is located closer to the beam ends. Compared with graded beams, the frequency of the
homogeneous beam (E2/E1 ¼ 1.0) is much more affected by the edge crack. The results for hinged–hinged and
clamped–hinged beams are very similar to those of clamped–clamped beams and therefore, are not shown for
brevity.

Fig. 6 gives nonlinear fundamental mode shapes for FGM beams with various crack depths (a/h ¼ 0.0, 0.1,
0.2, 0.3) at wmax ¼ 0.6. Note that a/h ¼ 0.0 virtually indicates a beam without crack. The crack depth has
insignificant effect on the nonlinear mode shape for clamped–hinged beam, but it is relative large for the
hinged–hinged and clamped–clamped beams. It is found that the maximum amplitude occurs at the midpoint
of the hinged–hinged and clamped–clamped beams but not for the clamped–hinged beam.
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Fig. 6. Nonlinear mode shapes of FGM beams with different crack depth (wmax ¼ 0.6): (a) hinged–hinged, (b) clamped–clamped, and

(c) clamped–hinged.
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5. Conclusions

The nonlinear vibration behavior of cracked FGM beams is studied within the framework of Timoshenko
beam theory and von Kármán type displacement–strain relationship. The crack is modeled by a massless
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elastic rotational spring. The materials properties are assumed to follow exponential distributions through
thickness direction. The Ritz method and a direct iterative procedure are employed to find the nonlinear
frequencies and associated mode shapes. The effects of material composition, crack depth, crack location,
boundary conditions, and slenderness ratio on nonlinear free vibration characteristics of cracked FGM beams
are studied in detail. Numerical results show that (1) all intact and cracked FGM beams exhibit typical ‘hard-
spring’ behavior; (2) the nonlinear frequencies of the intact hinged–hinged and clamped–hinged graded beams
are dependent on the sign of the vibration amplitudes; (3) at vibration amplitudes of same magnitude but
opposite sign, nonlinear frequency ratios of all cracked graded beams are different although the difference is
not significant for clamped–clamped graded beam; (4) the linear frequency is greatly reduced with an increase
in crack depth but the nonlinear frequency ratio and mode shapes are much less affected by the change in
crack depth; and (5) the linear and nonlinear frequencies of all beams are most sensitive to cracks located at
the midpoint of the beam.
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Appendix A

Re-write trial functions in Eqs. (28)–(30) in the following form:

uaðzÞ ¼
XN

j¼1

AjX1j ; ubðzÞ ¼
XN

j¼1

~AjX2j ; u2ðzÞ ¼
XN

j¼1

~AjX3j, (A.1)

waðzÞ ¼
XN

j¼1

BjX1j ; wbðzÞ ¼
XN

j¼1

~BjX2j ; w2ðzÞ ¼
XN

j¼1

~BjX3j, (A.2)

caðzÞ ¼
XN

j¼1

CjX4j ; cbðzÞ ¼
XN

j¼1

~CjX5j ; ccðzÞ ¼
XN

j¼1

~AjX6j ; c2ðzÞ ¼
XN

j¼1

~CjX7j . (A.3)

The elements of symmetric linear stiffness matrix [KL]6N� 6N are

½KL�ðj;mÞ ¼

Z z0

0

a11
qX1j

qz
qX1m

qz
dz; ½KL�ðj;NþmÞ ¼

Z z0

0

a11
qX2j

qz
þ b11

qX6j

qz

� �
qX1m

qz
dz,

½KL�ðj;2NþmÞ ¼ ½KL�ðj;3NþmÞ ¼ 0,

½KL�ðj;4NþmÞ ¼

Z z0

0

b11
qX4j

qz
qX1m

qz
dz; ½KL�ðj;5NþmÞ ¼

Z z0

0

b11
qX5j

qz
qX1m

qz
dz,

½KL�ðNþj;NþmÞ ¼

Z z0

0

b11
qX6j

qz
qX2m

qz
þ

qX2j

qz
qX6m

qz

� �
þ a11

qX2j

qz
qX2m

qz
þ d11

qX6j

qz
qX6m

qz
þ a55Z2X6jX6m

� �
dz

þ

Z 1

z0

a11
qX3j

qz
qX3m

qz
dzþ 2K�T ðX6jX6mÞz¼z0 ,

½KL�ðNþj;2NþmÞ ¼

Z z0

0

a55Z
qX1j

qz
X6m dz; ½KL�ðNþj;3NþmÞ ¼

Z z0

0

a55Z
qX2j

qz
X6m dz,

½KL�ðNþj;4NþmÞ ¼

Z z0

0

b11
qX4j

qz
qX2m

qz
þ d11

qX4j

qz
qX6m

qz
þ a55Z2X4jX6m

� �
dzþ 2K�T ðX4jX6mÞz¼z0 ,
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½KL�ðNþj;5NþmÞ ¼

Z z0

0

b11
qX5j

qz
qX2m

qz
þ d11

qX5j

qz
qX6m

qz
þ a55Z2X5jX6m

� �
dz

þ

Z 1

z0

b11
qX7j

qz
qX3m

qz
dzþ 2K�TX6mðX5j � X7jÞz¼z0 ,

½KL�ð2Nþj;2NþmÞ ¼

Z z0

0

a55
qX1j

qz
qX1m

qz
dz; ½KL�ð2Nþj;3NþmÞ ¼

Z z0

0

a55
qX2j

qz
qX1m

qz
dz,

½KL�ð2Nþj;4NþmÞ ¼

Z z0

0

a55ZX4j

qX1m

qz
dz,

½KL�ð2Nþj;5NþmÞ ¼

Z z0

0

a55ZX5j
qX1m

qz
dz; ½KL�ð3Nþj;3NþmÞ ¼

Z 1

z0

a55
qX3j

qz
qX3m

qz
dzþ

Z z0

0

a55
qX2j

qz
qX2m

qz
dz,

½KL�ð3Nþj;4NþmÞ ¼

Z z0

0

a55ZX4j

qX2m

qz
dz; ½KL�ð3Nþj;5NþmÞ ¼

Z 1

z0

a55ZX7j

qX3m

qz
dzþ

Z z0

0

a55ZX5j

qX2m

qz
dz,

½KL�ð4Nþj;4NþmÞ ¼

Z z0

0

d11
qX4j

qz
qX4m

qz
þ a55Z2X4jX4m

� �
dzþ 2K�T ðX4jX4mÞz¼z0 ,

½KL�ð4Nþj;5NþmÞ ¼

Z z0

0

d11
qX5j

qz
qX4m

qz
þ a55Z2X5jX4m

� �
dzþ 2K�T ðX5jX5m � X7jX4mÞz¼z0 ,

½KL�ð5Nþj;5NþmÞ ¼

Z 1

z0

d11
qX7j

qz
qX7m

qz
þ a55Z2X7jX7m

� �
dzþ

Z z0

0

d11
qX5j

qz
qX5m

qz
þ a55Z2X5jX5m

� �
dz

þ 2K�T ðX5jX5m þ X7jX7m � 2X7jX5mÞz¼z0 .

The elements of the symmetric mass matrix [M]6N� 6N are

½M�ðj;mÞ ¼

Z z0

0

Ī1X1jX1m dz; ½M�ðj;NþmÞ ¼

Z z0

0

ðĪ1X2jX1m þ Ī2X6jX1mÞdz; ½M�ðj;2NþmÞ ¼ ½M�ðj;3NþmÞ ¼ 0,

½M�ðj;4NþmÞ ¼

Z z0

0

Ī2X4jX1m dz; ½M�ðj;5NþmÞ ¼

Z z0

0

Ī2X5jX1m dz,

½M�ðNþj;NþmÞ ¼

Z 1

z0

Ī1X3jX3m dzþ
Z z0

0

ðĪ1X2jX2m þ Ī2X6jX2m þ Ī2X2jX6m þ Ī3X6jX6mÞdz,

½M�ðNþj;2NþmÞ ¼ ½M�ðNþj;3NþmÞ ¼ 0; ½M�ðNþj;4NþmÞ ¼

Z z0

0

ðĪ2X4jX2m þ Ī3X4jX6mÞdz,

½M�ðNþj;5NþmÞ ¼

Z 1

z0

Ī2X7jX3m dzþ
Z z0

0

ðĪ2X5jX2m þ Ī3X5jX6mÞdz; ½M�ð2Nþj;2NþmÞ ¼

Z z0

0

Ī1X1jX1m dz,

½M�ð2Nþj;3NþmÞ ¼

Z z0

0

Ī1X2jX1m dz; ½M�ð2Nþj;4NþmÞ ¼ ½M�ð2Nþj;5NþmÞ ¼ 0,

½M�ð3Nþj;3NþmÞ ¼

Z 1

z0

Ī1X3jX3m dzþ
Z z0

0

Ī1X2jX2m dz; ½M�ð3Nþj;4NþmÞ ¼ ½M�ð3Nþj;5NþmÞ ¼ 0,
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½M�ð4Nþj;4NþmÞ ¼

Z z0

0

Ī3X4jX4m dz; ½M�ð4Nþj;5NþmÞ ¼

Z z0

0

Ī3X5jX4m dz,

½M�ð5Nþj;5NþmÞ ¼

Z 1

z0

Ī3X7jX7m dzþ
Z z0

0

Ī3X7jX5m dz.

The elements of the nonlinear stiffness matrices [KNL1]6N� 6N and [KNL2]6N� 6N are

½KNL1�ðj;mÞ ¼ ½KNL1�ðj;NþmÞ ¼ ½KNL1�ðj;4NþmÞ ¼ ½KNL1�ðj;5NþmÞ ¼ 0; ½KNL1�ðj;2NþmÞ ¼
a11

Z

Z z0

0

qw1

qz
qX1j

qz
qX1m

qz
dz,

½KNL1�ðj;3NþmÞ ¼
a11

Z

Z z0

0

qw1

qz
qX2j

qz
qX1m

qz
dz; ½KNL1�ðNþj;NþmÞ ¼ ½KNL1�ðNþj;4NþmÞ ¼ ½KNL1�ðNþj;5NþmÞ ¼ 0,

½KNL1�ðNþj;2NþmÞ ¼
1

Z

Z z0

0

a11
qw1

qz
qX1j

qz
qX2m

qz
þ b11

qw1

qz
qX1j

qz
qX6m

qz

� �
dz,

½KNL1�ðNþj;3NþmÞ ¼
a11

Z

Z 1

z0

qw2

qz
qX3j

qz
qX3m

qz
dzþ

1

Z

Z z0

0

qw1

qz
qX2j

qz
a11

qX2m

qz
þ b11

qX6m

qz

� �
dz,

½KNL1�ð2Nþj;2NþmÞ ¼ ½KNL1�ð2Nþj;3NþmÞ ¼ 0; ½KNL1�ð2Nþj;4NþmÞ ¼
b11

Z

Z z0

0

qw1

qz
qX4j

qz
qX1m

qz
dz,

½KNL�ð2Nþj;5NþmÞ ¼
b11

Z

Z z0

0

qw1

qz
qX5j

qz
qX1m

qz
dz; ½KNL1�ð3Nþj;3NþmÞ ¼ 0,

½KNL1�ð3Nþj;4NþmÞ ¼
b11

Z

Z z0

0

qw1

qz
qX4j

qz
qX2m

qz
dz,

½KNL1�ð3Nþj;5NþmÞ ¼
b11

Z

Z 1

z0

qw2

qz
qX7j

qz
qX3m

qz
dzþ

Z z0

0

qw1

qz
qX5j

qz
qX2m

qz
dz

� �
,

½KNL1�ð4Nþj;4NþmÞ ¼ ½KNL1�ð4Nþj;5NþmÞ ¼ 0; ½KNL2�ð5Nþj;5NþmÞ ¼ 0,

½KNL2�ðj;mÞ ¼ ½KNL2�ðj;NþmÞ ¼ ½KNL2�ðj;mÞ ¼ ½KNL2�ðj;NþmÞ ¼ ½KNL2�ðj;4NþmÞ ¼ ½KNL2�ðj;5NþmÞ ¼ 0,

½KNL2�ðNþj;NþmÞ ¼ ½KNL2�ðNþj;mÞ ¼ ½KNL2�ðNþj;NþmÞ ¼ ½KNL2�ðNþj;4NþmÞ ¼ ½KNL2�ðNþj;5NþmÞ ¼ 0,

½KNL2�ð2Nþj;2NþmÞ ¼
3a11

2Z2

Z z0

0

qw1

qz

� �2 qX1j

qz
qX1m

qz
dz; ½KNL2�ð2Nþj;3NþmÞ ¼

3a11

2Z2

Z z0

0

qw1

qz

� �2 qX2j

qz
qX1m

qz
dz,

½KNL2�ð2Nþj;4NþmÞ ¼ ½KNL2�ð2Nþj;5NþmÞ ¼ 0,

½KNL2�ð3Nþj;3NþmÞ ¼
3a11

2Z2

Z 1

z0

qw2

qz

� �2 qX3j

qz
qX3m

qz
dzþ

Z z0

0

qw1

qz

� �2 qX2j

qz
qX2m

qz
dz

" #
,

½KNL2�ð3Nþj;4NþmÞ ¼ ½KNL2�ð3Nþj;5NþmÞ ¼ 0; ½KNL2�ð4Nþj;4NþmÞ ¼ ½KNL2�ð4Nþj;5NþmÞ ¼ 0; ½KNL2�ð5Nþj;5NþmÞ ¼ 0,

where j;m ¼ 1; 2; . . . ;N.
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Appendix B

For a cracked FGM beam, the nonlinear governing equations of motion can be derived from Hamilton’s
principle as

A11
q2Ui

qx2
þ

qW i

qx

q2W i

qx2

� �
þ B11

q2Ci

qx2
¼ I1

q2Ui

qt2
þ I2

q2Ci

qt2
, (B.1)

kA55
q2W i

qx2
þ

qCi

qx

� �
þ

q
qx

Nxi

qW i

qx

� �
¼ I1

q2W i

qt2
, (B.2)

B11
q2Ui

qx2
þ

qW i

qx

q2W i

qx2

� �
þD11

q2Ci

qx2
� kA55

qW i

qx
þCi

� �
¼ I2

q2Ui

qt2
þ I3

q2Ci

qt2
, (B.3)

where the subscript i ¼ 1 and 2 refer to the left sub-beam and right sub-beam divided by the crack; The normal
resultant force Nxi, bending moment Mxi, and transverse shear force Qxi are calculated from

Nxi ¼ A11
qUi

qx
þ

1

2

qW i

qx

� �2
" #

þ B11
qCi

qx
, (B.4)

Mxi ¼ B11
qUi

qx
þ

1

2

qW i

qx

� �2
" #

þD11
qCi

qx
, (B.5)

Qxi ¼ kA55
qW i

qx
þCi

� �
. (B.6)

The corresponding boundary conditions at beam ends (x ¼ 0,L) require

x ¼ 0 : U1 ¼ 0 or Nx1 ¼ 0; W 1 ¼ 0 or Qx1 ¼ 0; C1 ¼ 0 or Mx1 ¼ 0, (B.7)

x ¼ L : U2 ¼ 0 or Nx2 ¼ 0; W 2 ¼ 0 or Qx2 ¼ 0; C2 ¼ 0 or Mx2 ¼ 0, (B.8)

and the compatibility conditions at the cracked section x ¼ L1 are

U1 ¼ U2; W 1 ¼W 2; KT ðC2 �C1Þ ¼M1; Nx1 ¼ Nx2; Mx1 ¼Mx2; Qx1 ¼ Qx2. (B.9)

The nonlinear frequency of the cracked FGM beams can be obtained by solving Eqs. (B.1)–(B.3) and
(B.7)–(B.9). For details of DQM procedure, please refer to Refs. [33,34].
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